Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 22(20): 205708, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21444948

RESUMO

This work presents a novel characterization methodology for the dielectric charging phenomenon in electrostatically driven MEMS devices using Kelvin probe force microscopy (KPFM). It has been used to study plasma-enhanced chemical vapor deposition (PECVD) silicon nitride thin films in view of application in electrostatic capacitive RF MEMS switches. The proposed technique takes the advantage of the atomic force microscope (AFM) tip to simulate charge injection through asperities, and then the induced surface potential is measured. The impact of bias amplitude, bias polarity, and bias duration employed during charge injection has been explored. The influence of various parameters on the charging/discharging processes has been investigated: dielectric film thickness, SiN(x) material deposition conditions, and under layers. Fourier transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS) material characterization techniques have been used to determine the chemical bonds and compositions, respectively, of the SiN(x) films being investigated. The required samples for this technique consist only of thin dielectric films deposited over planar substrates, and no photolithography steps are required. Therefore, the proposed methodology provides a low cost and quite fast solution compared to other available characterization techniques of actual MEMS switches. Finally, the comparison between the KPFM results and the discharge current transients (DCT) measurements shows a quite good agreement.

2.
J Colloid Interface Sci ; 358(1): 1-13, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21444091

RESUMO

In this work, for the first time different stiction mechanisms in electrostatic micro-electromechanical systems (MEMS) switches were studied. In these devices stiction can be caused by two main mechanisms: dielectric charging and meniscus formation resulting from the adsorbed water film between the switch bridge and the dielectric layer. The effect of each mechanism and their interaction were investigated by measuring the adhesive and friction forces under different electrical stress conditions and relative humidity levels. An atomic force microscope (AFM) was used to perform force-distance and friction measurements on the nanoscale. A novel technique was proposed to measure the induced surface potential over the dielectric surface and was used to explain the obtained adhesive and friction results. The evolution of adhesive force with time was monitored in order to study the charging/discharging processes in the dielectric film. The assessment methodology is employed for application in RF-MEMS switches and could be extended to other electrostatic MEMS devices. The study provides an in-depth understanding of different stiction mechanisms, and explanation for the literature reported device level measurements for electrostatic capacitive MEMS switches.

3.
Nanotechnology ; 22(3): 035705, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21149964

RESUMO

In this paper, we investigate the impact of environment gases and relative humidity on dielectric charging phenomenon in electrostatically actuated micro- and nano-electromechanical systems (MEMS and NEMS). The research is based on surface potential measurements using Kelvin probe force microscopy (KPFM). Plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films were investigated in view of applications in electrostatic capacitive RF MEMS switches. Charges were injected through the atomic force microscope (AFM) tip, and the induced surface potential was measured using KPFM. Experiments have been performed in air and in nitrogen environments, both under different relative humidity levels ranging from 0.02% to 40%. The impact of oxygen gas and hydrocarbon contaminants has been studied for the first time by using different gas purifiers in both air and nitrogen lines. Voltage pulses with different bias amplitudes have been applied during the charge injection step under all investigated environmental conditions in order to investigate the effect of bias amplitude. The investigation reveals a deeper understanding of charging and discharging processes and could further lead to improved operating environment conditions in order to minimize the dielectric charging. Finally, the nanoscale KPFM results obtained in this study show a good correlation with the device level measurements for capacitive MEMS switches reported in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...